-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLayerAnimate_nodes.py
461 lines (405 loc) · 21.4 KB
/
LayerAnimate_nodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
import argparse
import sys
import datetime
import os
import json
import torch
import torchvision.transforms as transforms
from torchvision.transforms import functional as F
import spaces
from PIL import Image
from typing import List
from diffusers import DDIMScheduler
sys.path.append(os.path.join(os.path.dirname(__file__), ".."))
from lvdm.models.unet import UNetModel
from lvdm.models.autoencoder import AutoencoderKL, AutoencoderKL_Dualref
from lvdm.models.condition import FrozenOpenCLIPEmbedder, FrozenOpenCLIPImageEmbedderV2, Resampler
from lvdm.models.layer_controlnet import LayerControlNet
from lvdm.pipelines.pipeline_animation import AnimationPipeline
from lvdm.utils import generate_gaussian_heatmap, save_videos_grid, save_videos_with_traj
from einops import rearrange
import cv2
import decord
from pathlib import Path
from PIL import Image
import numpy as np
from scipy.interpolate import PchipInterpolator
class LayerAnimate:
@spaces.GPU
def __init__(self, args):
if args.savedir is None:
time_str = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
savedir = f"samples/{time_str}"
else:
savedir = args.savedir
self.savedir = savedir
os.makedirs(savedir, exist_ok=True)
self.weight_dtype = torch.bfloat16
self.device = args.device
self.text_encoder = FrozenOpenCLIPEmbedder().eval()
self.image_encoder = FrozenOpenCLIPImageEmbedderV2().eval()
self.W = args.W
self.H = args.H
self.L = args.L
self.layer_capacity = args.layer_capacity
self.transforms = transforms.Compose([
transforms.Resize(min(self.H, self.W)),
transforms.CenterCrop((self.H, self.W)),
])
self.pipeline = None
self.generator = None
# sample_grid is used to generate fixed trajectories to freeze static layers
self.sample_grid = np.meshgrid(np.linspace(0, self.W - 1, 10, dtype=int), np.linspace(0, self.H - 1, 10, dtype=int))
self.sample_grid = np.stack(self.sample_grid, axis=-1).reshape(-1, 1, 2)
self.sample_grid = np.repeat(self.sample_grid, self.L, axis=1) # [N, F, 2]
@spaces.GPU
def set_seed(self, seed):
np.random.seed(seed)
torch.manual_seed(seed)
self.generator = torch.Generator(self.device).manual_seed(seed)
@spaces.GPU
def set_model(self, pretrained_model_path):
scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
image_projector = Resampler.from_pretrained(pretrained_model_path, subfolder="image_projector").eval()
vae, vae_dualref = None, None
if "I2V" or "Mix" in pretrained_model_path:
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").eval()
if "Interp" or "Mix" in pretrained_model_path:
vae_dualref = AutoencoderKL_Dualref.from_pretrained(pretrained_model_path, subfolder="vae_dualref").eval()
unet = UNetModel.from_pretrained(pretrained_model_path, subfolder="unet").eval()
layer_controlnet = LayerControlNet.from_pretrained(pretrained_model_path, subfolder="layer_controlnet").eval()
self.pipeline = AnimationPipeline(
vae=vae, vae_dualref=vae_dualref, text_encoder=self.text_encoder, image_encoder=self.image_encoder, image_projector=image_projector,
unet=unet, layer_controlnet=layer_controlnet, scheduler=scheduler
).to(device=self.device, dtype=self.weight_dtype)
if "Interp" or "Mix" in pretrained_model_path:
self.pipeline.vae_dualref.decoder.to(dtype=torch.float32)
return pretrained_model_path
def upload_image(self, image):
image = self.transforms(image)
return image
def run(self, input_image, input_image_end, pretrained_model_path, seed,
prompt, n_prompt, num_inference_steps, guidance_scale,
*layer_args):
self.set_seed(seed)
global layer_tracking_points
args_layer_tracking_points = [layer_tracking_points[i].value for i in range(self.layer_capacity)]
args_layer_masks = layer_args[:self.layer_capacity]
args_layer_masks_end = layer_args[self.layer_capacity : 2 * self.layer_capacity]
args_layer_controls = layer_args[2 * self.layer_capacity : 3 * self.layer_capacity]
args_layer_scores = list(layer_args[3 * self.layer_capacity : 4 * self.layer_capacity])
args_layer_sketches = layer_args[4 * self.layer_capacity : 5 * self.layer_capacity]
args_layer_valids = layer_args[5 * self.layer_capacity : 6 * self.layer_capacity]
args_layer_statics = layer_args[6 * self.layer_capacity : 7 * self.layer_capacity]
for layer_idx in range(self.layer_capacity):
if args_layer_controls[layer_idx] != "score":
args_layer_scores[layer_idx] = -1
if args_layer_statics[layer_idx]:
args_layer_scores[layer_idx] = 0
mode = "i2v"
image1 = F.to_tensor(input_image) * 2 - 1
frame_tensor = image1[None].to(self.device) # [F, C, H, W]
if input_image_end is not None:
mode = "interpolate"
image2 = F.to_tensor(input_image_end) * 2 - 1
frame_tensor2 = image2[None].to(self.device)
frame_tensor = torch.cat([frame_tensor, frame_tensor2], dim=0)
frame_tensor = frame_tensor[None]
if mode == "interpolate":
layer_masks = torch.zeros((1, self.layer_capacity, 2, 1, self.H, self.W), dtype=torch.bool)
else:
layer_masks = torch.zeros((1, self.layer_capacity, 1, 1, self.H, self.W), dtype=torch.bool)
for layer_idx in range(self.layer_capacity):
if args_layer_masks[layer_idx] is not None:
mask = F.to_tensor(args_layer_masks[layer_idx]) > 0.5
layer_masks[0, layer_idx, 0] = mask
if args_layer_masks_end[layer_idx] is not None and mode == "interpolate":
mask = F.to_tensor(args_layer_masks_end[layer_idx]) > 0.5
layer_masks[0, layer_idx, 1] = mask
layer_masks = layer_masks.to(self.device)
layer_regions = layer_masks * frame_tensor[:, None]
layer_validity = torch.tensor([args_layer_valids], dtype=torch.bool, device=self.device)
motion_scores = torch.tensor([args_layer_scores], dtype=self.weight_dtype, device=self.device)
layer_static = torch.tensor([args_layer_statics], dtype=torch.bool, device=self.device)
sketch = torch.ones((1, self.layer_capacity, self.L, 3, self.H, self.W), dtype=self.weight_dtype)
for layer_idx in range(self.layer_capacity):
sketch_path = args_layer_sketches[layer_idx]
if sketch_path is not None:
video_reader = decord.VideoReader(sketch_path)
assert len(video_reader) == self.L, f"Input the length of sketch sequence should match the video length."
video_frames = video_reader.get_batch(range(self.L)).asnumpy()
sketch_values = [F.to_tensor(self.transforms(Image.fromarray(frame))) for frame in video_frames]
sketch_values = torch.stack(sketch_values) * 2 - 1
sketch[0, layer_idx] = sketch_values
sketch = sketch.to(self.device)
heatmap = torch.zeros((1, self.layer_capacity, self.L, 3, self.H, self.W), dtype=self.weight_dtype)
heatmap[:, :, :, 0] -= 1
trajectory = []
traj_layer_index = []
for layer_idx in range(self.layer_capacity):
tracking_points = args_layer_tracking_points[layer_idx]
if args_layer_statics[layer_idx]:
# generate pseudo trajectory for static layers
temp_layer_mask = layer_masks[0, layer_idx, 0, 0].cpu().numpy()
valid_flag = temp_layer_mask[self.sample_grid[:, 0, 1], self.sample_grid[:, 0, 0]]
valid_grid = self.sample_grid[valid_flag] # [F, N, 2]
trajectory.extend(list(valid_grid))
traj_layer_index.extend([layer_idx] * valid_grid.shape[0])
else:
for temp_track in tracking_points:
if len(temp_track) > 1:
x = [point[0] for point in temp_track]
y = [point[1] for point in temp_track]
t = np.linspace(0, 1, len(temp_track))
fx = PchipInterpolator(t, x)
fy = PchipInterpolator(t, y)
t_new = np.linspace(0, 1, self.L)
x_new = fx(t_new)
y_new = fy(t_new)
temp_traj = np.stack([x_new, y_new], axis=-1).astype(np.float32)
trajectory.append(temp_traj)
traj_layer_index.append(layer_idx)
elif len(temp_track) == 1:
trajectory.append(np.array(temp_track * self.L))
traj_layer_index.append(layer_idx)
trajectory = np.stack(trajectory)
trajectory = np.transpose(trajectory, (1, 0, 2))
traj_layer_index = np.array(traj_layer_index)
heatmap = generate_gaussian_heatmap(trajectory, self.W, self.H, traj_layer_index, self.layer_capacity, offset=True)
heatmap = rearrange(heatmap, "f n c h w -> (f n) c h w")
graymap, offset = heatmap[:, :1], heatmap[:, 1:]
graymap = graymap / 255.
rad = torch.sqrt(offset[:, 0:1]**2 + offset[:, 1:2]**2)
rad_max = torch.max(rad)
epsilon = 1e-5
offset = offset / (rad_max + epsilon)
graymap = graymap * 2 - 1
heatmap = torch.cat([graymap, offset], dim=1)
heatmap = rearrange(heatmap, '(f n) c h w -> n f c h w', n=self.layer_capacity)
heatmap = heatmap[None]
heatmap = heatmap.to(self.device)
sample = self.pipeline(
prompt,
self.L,
self.H,
self.W,
frame_tensor,
layer_masks = layer_masks,
layer_regions = layer_regions,
layer_static = layer_static,
motion_scores = motion_scores,
sketch = sketch,
trajectory = heatmap,
layer_validity = layer_validity,
num_inference_steps = num_inference_steps,
guidance_scale = guidance_scale,
guidance_rescale = 0.7,
negative_prompt = n_prompt,
num_videos_per_prompt = 1,
eta = 1.0,
generator = self.generator,
fps = 24,
mode = mode,
weight_dtype = self.weight_dtype,
output_type = "tensor",
).videos
output_video_path = os.path.join(self.savedir, "video.mp4")
save_videos_grid(sample, output_video_path, fps=8)
output_video_traj_path = os.path.join(self.savedir, "video_with_traj.mp4")
vis_traj_flag = np.zeros(trajectory.shape[1], dtype=bool)
for traj_idx in range(trajectory.shape[1]):
if not args_layer_statics[traj_layer_index[traj_idx]]:
vis_traj_flag[traj_idx] = True
vis_traj = torch.from_numpy(trajectory[:, vis_traj_flag])
save_videos_with_traj(sample[0], vis_traj, os.path.join(self.savedir, f"video_with_traj.mp4"), fps=8, line_width=7, circle_radius=10)
return output_video_path, output_video_traj_path
def update_layer_region(image, layer_mask):
if image is None or layer_mask is None:
return None, False
layer_mask_tensor = (F.to_tensor(layer_mask) > 0.5).float()
image = F.to_tensor(image)
layer_region = image * layer_mask_tensor
layer_region = F.to_pil_image(layer_region)
layer_region.putalpha(layer_mask)
return layer_region, True
def control_layers(control_type):
if control_type == "score":
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
elif control_type == "trajectory":
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
def visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask):
first_mask_tensor = (F.to_tensor(first_mask) > 0.5).float()
first_frame = F.to_tensor(first_frame)
first_region = first_frame * first_mask_tensor
first_region = F.to_pil_image(first_region)
first_region.putalpha(first_mask)
transparent_background = first_region.convert('RGBA')
if last_frame is not None and last_mask is not None:
last_mask_tensor = (F.to_tensor(last_mask) > 0.5).float()
last_frame = F.to_tensor(last_frame)
last_region = last_frame * last_mask_tensor
last_region = F.to_pil_image(last_region)
last_region.putalpha(last_mask)
transparent_background_end = last_region.convert('RGBA')
width, height = transparent_background.size
transparent_layer = np.zeros((height, width, 4))
for track in tracking_points:
if len(track) > 1:
for i in range(len(track)-1):
start_point = np.array(track[i], dtype=np.int32)
end_point = np.array(track[i+1], dtype=np.int32)
vx = end_point[0] - start_point[0]
vy = end_point[1] - start_point[1]
arrow_length = max(np.sqrt(vx**2 + vy**2), 1)
if i == len(track)-2:
cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
else:
cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
elif len(track) == 1:
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
if last_frame is not None and last_mask is not None:
trajectory_map_end = Image.alpha_composite(transparent_background_end, transparent_layer)
else:
trajectory_map_end = None
return trajectory_map, trajectory_map_end
def add_drag(layer_idx):
global layer_tracking_points
tracking_points = layer_tracking_points[layer_idx].value
tracking_points.append([])
return
def delete_last_drag(layer_idx, first_frame, first_mask, last_frame, last_mask):
global layer_tracking_points
tracking_points = layer_tracking_points[layer_idx].value
tracking_points.pop()
trajectory_map, trajectory_map_end = visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask)
return trajectory_map, trajectory_map_end
def delete_last_step(layer_idx, first_frame, first_mask, last_frame, last_mask):
global layer_tracking_points
tracking_points = layer_tracking_points[layer_idx].value
tracking_points[-1].pop()
trajectory_map, trajectory_map_end = visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask)
return trajectory_map, trajectory_map_end
def add_tracking_points(layer_idx, first_frame, first_mask, last_frame, last_mask, evt: gr.SelectData): # SelectData is a subclass of EventData
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
global layer_tracking_points
tracking_points = layer_tracking_points[layer_idx].value
tracking_points[-1].append(evt.index)
trajectory_map, trajectory_map_end = visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask)
return trajectory_map, trajectory_map_end
def reset_states(layer_idx, first_frame, first_mask, last_frame, last_mask):
global layer_tracking_points
layer_tracking_points[layer_idx].value = [[]]
tracking_points = layer_tracking_points[layer_idx].value
trajectory_map, trajectory_map_end = visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask)
return trajectory_map, trajectory_map_end
def upload_tracking_points(tracking_path, layer_idx, first_frame, first_mask, last_frame, last_mask):
if tracking_path is None:
layer_region, _ = update_layer_region(first_frame, first_mask)
layer_region_end, _ = update_layer_region(last_frame, last_mask)
return layer_region, layer_region_end
global layer_tracking_points
with open(tracking_path, "r") as f:
tracking_points = json.load(f)
layer_tracking_points[layer_idx].value = tracking_points
trajectory_map, trajectory_map_end = visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask)
return trajectory_map, trajectory_map_end
def reset_all_controls():
global args, layer_tracking_points
outputs = []
# Reset tracking points states
for layer_idx in range(args.layer_capacity):
layer_tracking_points[layer_idx].value = [[]]
# Reset global components
outputs.extend([
"an anime scene.", # text prompt
"", # negative text prompt
50, # inference steps
7.5, # guidance scale
42, # seed
None, # input image
None, # input image end
None, # output video
None, # output video with trajectory
])
# Reset layer controls visibility
outputs.extend([None] * args.layer_capacity) # layer masks
outputs.extend([None] * args.layer_capacity) # layer masks end
outputs.extend([None] * args.layer_capacity) # layer regions
outputs.extend([None] * args.layer_capacity) # layer regions end
outputs.extend(["sketch"] * args.layer_capacity) # layer controls
outputs.extend([gr.update(visible=False, value=-1) for _ in range(args.layer_capacity)]) # layer score controls
outputs.extend([gr.update(visible=False) for _ in range(4 * args.layer_capacity)]) # layer trajectory control 4 buttons
outputs.extend([gr.update(visible=False, value=None) for _ in range(args.layer_capacity)]) # layer trajectory file
outputs.extend([None] * args.layer_capacity) # layer sketch controls
outputs.extend([False] * args.layer_capacity) # layer validity
outputs.extend([False] * args.layer_capacity) # layer statics
return outputs
parser = argparse.ArgumentParser()
parser.add_argument("--savedir", type=str, default=None)
parser.add_argument("--L", type=int, default=16 )
parser.add_argument("--W", type=int, default=512)
parser.add_argument("--H", type=int, default=320)
parser.add_argument("--layer_capacity", type=int, default=4)
parser.add_argument("--device", type=str, default="cuda:0")
args = parser.parse_args()
# ComfyUI Custom Node: Load Images
class LoadImages:
@classmethod
def INPUT_TYPES(cls):
return {"required": {"image_paths": ("STRING", {"default": ""})}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "load"
CATEGORY = "LayerAnimate"
def load(self, image_paths):
paths = image_paths.split(",")
images = [Image.open(p).convert("RGBA") for p in paths if p.strip()]
return (images,)
# ComfyUI Custom Node: Load Model
class LoadPretrainedModel:
@classmethod
def INPUT_TYPES(cls):
return {"required": {"model_path": ("STRING", {"default": "None"})}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "load"
CATEGORY = "LayerAnimate"
def load(self, model_path):
model = torch.load(model_path) if model_path != "None" else None
return (model,)
# ComfyUI Custom Node: Animation Processing
class LayerAnimateNode:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"model": ("MODEL",),
"input_image": ("IMAGE",),
"input_image_end": ("IMAGE",),
"text_prompt": ("STRING", {"default": "an anime scene."}),
"negative_text_prompt": ("STRING", {"default": ""}),
"num_inference_steps": ("INT", {"default": 50, "min": 1, "max": 1000}),
"guidance_scale": ("FLOAT", {"default": 7.5}),
"seed": ("INT", {"default": 42}),
"layer_masks": ("IMAGE",),
"layer_masks_end": ("IMAGE",),
"layer_controls": ("STRING",),
"layer_score_controls": ("FLOAT",),
"layer_sketch_controls": ("VIDEO",),
"layer_valids": ("BOOL",),
"layer_statics": ("BOOL",),
}
}
RETURN_TYPES = ("VIDEO", "VIDEO")
FUNCTION = "run"
CATEGORY = "LayerAnimate"
def run(self, model, input_image, input_image_end, text_prompt, negative_text_prompt, num_inference_steps,
guidance_scale, seed, layer_masks, layer_masks_end, layer_controls, layer_score_controls,
layer_sketch_controls, layer_valids, layer_statics):
# TODO: Replace with actual model inference logic
generated_video = "output_video.mp4"
generated_video_traj = "output_video_traj.mp4"
reset_all_controls()
return (generated_video, generated_video_traj)