-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathaddernet_mnist.py
231 lines (195 loc) · 8.37 KB
/
addernet_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
from torchsummary import summary
import numpy as np
import matplotlib.pyplot as plt
from random import randint
import adder
# Network
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.adder1 = adder.adder2d(1, 20, kernel_size=5, stride=1, padding=0, bias=False)
self.bn1 = nn.BatchNorm2d(20)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.adder2 = adder.adder2d(20, 50, kernel_size=5, stride=1, padding=0, bias=False)
self.bn2 = nn.BatchNorm2d(50)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(800, 500)
self.relu1 = nn.ReLU(inplace=True)
self.fc2 = nn.Linear(500, 10)
def forward(self, x):
x = self.adder1(x)
x = self.bn1(x)
x = self.pool1(x)
x = self.adder2(x)
x = self.bn2(x)
x = self.pool2(x)
x = x.view(-1, 800)
x = self.fc1(x)
x = self.relu1(x)
x = self.fc2(x)
return F.softmax(x, dim=1)
class MnistModel(object):
def __init__(self):
self.batch_size = 64
self.test_batch_size = 100
self.learning_rate = 0.0025
self.sgd_momentum = 0.9
self.log_interval = 100
# Fetch MNIST data set.
self.train_loader = torch.utils.data.DataLoader(
datasets.MNIST('./data/mnist', train=True, download=True, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=self.batch_size,
shuffle=True)
self.test_loader = torch.utils.data.DataLoader(
datasets.MNIST('./data/mnist', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=self.test_batch_size,
shuffle=True)
self.network = Net()
# print(self.network)
summary(self.network, (1, 28, 28), device='cpu')
# Train the network for one or more epochs, validating after each epoch.
def learn(self, num_epochs=2):
# Train the network for a single epoch
def train(epoch):
self.network.train()
optimizer = optim.SGD(self.network.parameters(), lr=self.learning_rate, momentum=self.sgd_momentum)
for batch, (data, target) in enumerate(self.train_loader):
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = self.network(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch % self.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, batch * len(data), len(self.train_loader.dataset), 100. * batch / len(self.train_loader), loss.data.item()))
# Test the network
def test(epoch):
self.network.eval()
test_loss = 0
correct = 0
for data, target in self.test_loader:
with torch.no_grad():
data, target = Variable(data), Variable(target)
output = self.network(data)
test_loss += F.nll_loss(output, target).data.item()
pred = output.data.max(1)[1]
correct += pred.eq(target.data).cpu().sum()
test_loss /= len(self.test_loader)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(test_loss, correct, len(self.test_loader.dataset), 100. * correct / len(self.test_loader.dataset)))
for e in range(num_epochs):
train(e + 1)
test(e + 1)
def get_weights(self):
return self.network.state_dict()
def get_random_testcase(self):
data, target = next(iter(self.test_loader))
case_num = randint(0, len(data) - 1)
test_case = data.numpy()[case_num].ravel().astype(np.float32)
test_name = target.numpy()[case_num]
return test_case, test_name
def train_n_save_weights():
mnist_model = MnistModel()
mnist_model.learn()
torch.save(mnist_model.get_weights(), './saved_models/addernet_mnist.pth')
weights = mnist_model.get_weights()
print(weights)
# ********save single test image********
data, target = next(iter(mnist_model.test_loader))
case_num = randint(0, len(data) - 1)
torch.save(data[case_num].unsqueeze(0), './rand_image/test_img.pt')
torch.save(target[case_num], './rand_image/test_label.pt')
np.save('./rand_image/test_img.npy', data.numpy()[case_num].ravel().astype(np.float32))
np.save('./rand_image/test_label.npy', target.numpy()[case_num])
def single_image_inference():
mnist_model = MnistModel()
mnist_model.network.load_state_dict(torch.load('./saved_models/addernet_mnist.pth'))
input_tensor = torch.load('test_img.pt')
input_label = torch.load('test_label.pt')
input_label = input_label.numpy()
output = mnist_model.network(input_tensor)
output = output.detach().numpy()
pred = np.argmax(output)
print("Actual label: " + str(input_label))
print("Pred label: " + str(pred))
print("Pred label:", output)
def calc_accuracy():
mnist_model = MnistModel()
mnist_model.network.load_state_dict(torch.load('./saved_models/addernet_mnist.pth'))
correct = 0
for data, target in mnist_model.test_loader:
with torch.no_grad():
data, target = Variable(data), Variable(target)
output = mnist_model.network(data)
pred = output.data.max(1)[1]
correct += pred.eq(target.data).cpu().sum()
print('Accuracy: {}/{} ({:.2f}%)\n'.format(correct, len(mnist_model.test_loader.dataset),
100. * correct / len(mnist_model.test_loader.dataset)))
def calc_latency():
def run_test(device_name):
model = MnistModel()
model.network.load_state_dict(torch.load('./saved_models/addernet_mnist.pth'))
device = torch.device(device_name)
model.network.to(device)
max_batch_size = 64
mean_latency_list = []
std_latency_list = []
batch_size_list = []
for batch_size in range(1, max_batch_size+1):
batch_size_list.append(batch_size)
dummy_input = torch.randn(batch_size, 1, 28, 28, dtype=torch.float).to(device)
starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
repetitions = 100
timings = np.zeros((repetitions, 1))
# GPU-WARM-UP
for _ in range(10):
_ = model.network(dummy_input)
# MEASURE PERFORMANCE
with torch.no_grad():
for rep in range(repetitions):
starter.record()
_ = model.network(dummy_input)
ender.record()
# WAIT FOR GPU SYNC
torch.cuda.synchronize()
curr_time = starter.elapsed_time(ender)
timings[rep] = curr_time
mean_syn = np.sum(timings) / repetitions
std_syn = np.std(timings)
mean_latency_list.append(mean_syn*1000.0)
std_latency_list.append(std_syn*1000.0)
print("Latency calculated for batch size: {}".format(batch_size), end="")
print('\r', end='')
print('Execution finished on:', device_name)
return mean_latency_list
# cpu_time = run_test('cpu')
gpu_time = run_test('cuda')
plt.figure(figsize=(10, 5))
# plt.plot(cpu_time, label='CPU')
plt.plot(gpu_time, label='CUDA')
plt.legend(loc="upper left")
plt.xlabel('Input Batch Size')
plt.ylabel('Mean Latency (ms)')
plt.title('Inference Latency - AdderNetMnist Pytorch Model')
plt.savefig('figures/pytorch_latency.jpg')
print('Inference latency graph saved for multiple batch sizes')
# print('Single image inference latency cpu(ms):', cpu_time[0])
print('Single image inference latency gpu(ms):', gpu_time[0])
def main():
# train_n_save_weights()
# single_image_inference()
calc_accuracy()
calc_latency()
if __name__ == '__main__':
main()