-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_importance_score.py
259 lines (204 loc) · 10.6 KB
/
generate_importance_score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import torch
import numpy as np
import torchvision
from torchvision import datasets, transforms
from torch.utils.data import Dataset, DataLoader
import torch.nn as nn
import torch.optim as optim
import os, sys
import argparse
import pickle
import torch.nn.functional as F
from core.model_generator import wideresnet, preact_resnet, resnet
from core.training import Trainer, TrainingDynamicsLogger
from core.data import IndexDataset, CIFARDataset, SVHNDataset, CINIC10Dataset, STL10Dataset
from core.utils import print_training_info, find_centroid_kmeans, calculate_distances
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
######################### Data Setting #########################
parser.add_argument('--batch-size', type=int, default=256, metavar='N',
help='input batch size for training.')
parser.add_argument('--dataset', type=str, default='cifar10', choices=['cifar10', 'cifar100', 'tiny', 'svhn', 'cinic10', 'stl10'])
######################### Path Setting #########################
parser.add_argument('--data-dir', type=str, default='../data/',
help='The dir path of the data.')
parser.add_argument('--base-dir', type=str,
help='The base dir of this project.')
parser.add_argument('--task-name', type=str, default='tmp',
help='The name of the training task.')
######################### GPU Setting #########################
parser.add_argument('--gpuid', type=str, default='0',
help='The ID of GPU.')
######################### Importance Score Generation Scheme #########################
parser.add_argument('--from-td', type=int, default=1,
help='Set 0 to calculate score for prototypicality.')
parser.add_argument('--importance-scheme', type=str, default='td', choices=['td', 'prototypicality']) #
parser.add_argument('--embedding-path', type=str, help='Path for the embedding') # for swav, simclr, etc.
################### Load Pseudo Labels from DL models ###################
parser.add_argument('--load-pseudo', action='store_true', default=False)
parser.add_argument('--pseudo-train-label-path', type=str, help='Path for the pseudo train labels')
args = parser.parse_args()
######################### Set path variable #########################
task_dir = os.path.join(args.base_dir, args.task_name)
ckpt_path = os.path.join(task_dir, f'ckpt-last.pt')
td_path = os.path.join(task_dir, f'td-{args.task_name}.pickle')
data_score_path = os.path.join(task_dir, f'data-score-{args.task_name}.pickle')
######################### Print setting #########################
print_training_info(args, all=True)
#########################
dataset = args.dataset
print(f"Dataset is {dataset}")
if dataset in ['cifar10', 'svhn', 'cinic10', 'stl10']:
num_classes=10
elif dataset == 'cifar100':
num_classes=100
######################### Ftn definition #########################
"""Calculate loss and entropy"""
def post_training_metrics(model, dataloader, data_importance, device):
model.eval()
data_importance['entropy'] = torch.zeros(len(dataloader.dataset))
data_importance['loss'] = torch.zeros(len(dataloader.dataset))
for batch_idx, (idx, (inputs, targets)) in enumerate(dataloader):
inputs, targets = inputs.to(device), targets.to(device)
logits = model(inputs)
prob = nn.Softmax(dim=1)(logits)
entropy = -1 * prob * torch.log(prob + 1e-10)
entropy = torch.sum(entropy, dim=1).detach().cpu()
loss = nn.CrossEntropyLoss(reduction='none')(logits, targets).detach().cpu()
data_importance['entropy'][idx] = entropy
data_importance['loss'][idx] = loss
"""Calculate td metrics"""
def training_dynamics_metrics(td_log, dataset, data_importance):
targets = []
data_size = len(dataset)
for i in range(data_size):
_, (_, y) = dataset[i]
targets.append(y)
targets = torch.tensor(targets)
data_importance['targets'] = targets.type(torch.int32)
data_importance['correctness'] = torch.zeros(data_size).type(torch.int32)
data_importance['forgetting'] = torch.zeros(data_size).type(torch.int32)
data_importance['last_correctness'] = torch.zeros(data_size).type(torch.int32)
data_importance['accumulated_margin'] = torch.zeros(data_size).type(torch.float32)
def record_training_dynamics(td_log):
#output = torch.exp(td_log['output'].type(torch.float))
output = torch.tensor(td_log['output'], dtype=torch.float32)
output = F.softmax(output, dim=-1)
predicted = output.argmax(dim=1)
index = td_log['idx'].type(torch.long)
label = targets[index]
correctness = (predicted == label).type(torch.int)
data_importance['forgetting'][index] += torch.logical_and(data_importance['last_correctness'][index] == 1, correctness == 0)
data_importance['last_correctness'][index] = correctness
data_importance['correctness'][index] += data_importance['last_correctness'][index]
batch_idx = range(output.shape[0])
target_prob = output[batch_idx, label]
output[batch_idx, label] = 0
other_highest_prob = torch.max(output, dim=1)[0]
margin = target_prob - other_highest_prob
data_importance['accumulated_margin'][index] += margin
for i, item in enumerate(td_log):
if i % 10000 == 0:
print(i)
record_training_dynamics(item)
"""Calculate td metrics"""
def EL2N(td_log, dataset, data_importance, max_epoch=10):
targets = []
data_size = len(dataset)
for i in range(data_size):
_, (_, y) = dataset[i]
targets.append(y)
targets = torch.tensor(targets)
data_importance['targets'] = targets.type(torch.int32)
data_importance['el2n'] = torch.zeros(data_size).type(torch.float32)
l2_loss = torch.nn.MSELoss(reduction='none')
def record_training_dynamics(td_log):
output = torch.tensor(td_log['output'] , dtype=torch.float32)
output = F.softmax(output, dim=1)
predicted = output.argmax(dim=1)
index = td_log['idx'].type(torch.long)
label = targets[index]
label_onehot = torch.nn.functional.one_hot(label, num_classes=num_classes)
el2n_score = torch.sqrt(l2_loss(label_onehot,output).sum(dim=1))
data_importance['el2n'][index] += el2n_score
for i, item in enumerate(td_log):
if i % 10000 == 0:
print(i)
if item['epoch'] == max_epoch:
return
record_training_dynamics(item)
#########################
GPUID = args.gpuid
os.environ["CUDA_VISIBLE_DEVICES"] = str(GPUID)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
transform_identical = transforms.Compose([
transforms.ToTensor(),
])
data_dir = os.path.join(args.data_dir, dataset)
print(f'dataset: {dataset}, data_dir: {data_dir}')
valset = None
if dataset == 'cifar10':
trainset = CIFARDataset.get_cifar10_train(data_dir, transform = transform_identical)
elif dataset == 'cifar100':
trainset = CIFARDataset.get_cifar100_train(data_dir, transform = transform_identical)
elif dataset == 'svhn':
trainset = SVHNDataset.get_svhn_train(data_dir, transform = transform_identical)
elif dataset == 'stl10':
trainset = STL10Dataset.get_stl10_train(data_dir, transform = transform_identical)
elif args.dataset == 'cinic10':
trainset = CINIC10Dataset.get_cinic10_train(data_dir, transform = transform_identical)
valset = CINIC10Dataset.get_cinic10_train(data_dir, transform = transform_identical, is_val=True)
if args.from_td == 1:
if args.load_pseudo:
if "cifar" in args.dataset:
#--pseudo_train_label_path example: ../datasets/cifar-100-python/label.pt
print(f"Loading Pseudo dataset labels from {args.pseudo_train_label_path}")
trainset = CIFARDataset.load_custom_labels(trainset, args.pseudo_train_label_path)
if "svhn" in args.dataset:
print(f"Loading Pseudo dataset labels from {args.pseudo_train_label_path}")
trainset = SVHNDataset.load_custom_labels(trainset, args.pseudo_train_label_path)
if "stl" in args.dataset:
print(f"Loading Pseudo dataset labels from {args.pseudo_train_label_path}")
trainset = STL10Dataset.load_custom_labels(trainset, args.pseudo_train_label_path)
if "cinic" in args.dataset:
print(f"Loading Pseudo dataset labels from {args.pseudo_train_label_path}")
trainset = CINIC10Dataset.load_custom_labels(trainset, args.pseudo_train_label_path)
print(f"Loading Pseudo dataset labels from {args.pseudo_train_label_path}")
valset = CINIC10Dataset.load_custom_labels(valset, args.pseudo_train_label_path)
if valset:
# merge trainset and valset
trainset = torch.utils.data.ConcatDataset([trainset, valset])
trainset = IndexDataset(trainset)
print(f"Trainset size: {len(trainset)}")
data_importance = {}
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=args.batch_size, shuffle=False, num_workers=16)
print(f"Number of classes: {num_classes}")
model = resnet('resnet18', num_classes=num_classes, device=device)
model = model.to(device)
# print(f'Ckpt path: {ckpt_path}.')
# checkpoint = torch.load(ckpt_path)['model_state_dict']
# checkpoint = {k.replace('module.', ''): v for k, v in checkpoint.items()}
# model.load_state_dict(checkpoint)
# model.eval()
with open(td_path, 'rb') as f:
pickled_data = pickle.load(f)
training_dynamics = pickled_data['training_dynamics']
# post_training_metrics(model, trainloader, data_importance, device)
training_dynamics_metrics(training_dynamics, trainset, data_importance)
EL2N(training_dynamics, trainset, data_importance, max_epoch=10)
print(f'Saving data score at {data_score_path}')
with open(data_score_path, 'wb') as handle:
pickle.dump(data_importance, handle)
elif args.importance_scheme == 'prototypicality':
print("Calculating prototypicality score")
embeddings = torch.load(args.embedding_path, map_location='cpu')
print(f"Loading embeddings from {args.embedding_path}, len={len(embeddings)}")
centroids, labels = find_centroid_kmeans(embeddings, num_classes)
distances = calculate_distances(embeddings, labels, centroids)
distances.sort(key=lambda x: x[1], reverse=True)
# create a data_score_path if it does not exist
print(f'Saving data score at {data_score_path}, length: {len(distances)}')
import os
os.makedirs(os.path.dirname(data_score_path), exist_ok=True)
with open(data_score_path, 'wb') as f:
pickle.dump(distances, f)