-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBP网络.cpp
282 lines (256 loc) · 8.64 KB
/
BP网络.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
#include <iostream>
#include <vector>
#include <cmath>
#include <cstdlib>
#include <ctime>
using namespace std;
//定义激活函数
double sigmoid(double x) {
return 1.0 / (1.0 + exp(-x));
}
//定义激活函数的导数
double sigmoid_der(double x) {
return sigmoid(x) * (1 - sigmoid(x));
}
//定义神经元类
class Neuron {
public:
//构造函数,初始化输入、输出、权重、误差
Neuron(int input_num) {
this->input_num = input_num;
this->output = 0.0;
this->error = 0.0;
this->weights.resize(input_num);
//随机初始化权重
srand(time(NULL));
for (int i = 0; i < input_num; i++) {
this->weights[i] = (rand() % 100) / 100.0;
}
}
//计算神经元的输出,输入为前一层的输出向量
void calc_output(vector<double> inputs) {
this->inputs = inputs;
double sum = 0.0;
for (int i = 0; i < input_num; i++) {
sum += inputs[i] * weights[i];
}
this->output = sigmoid(sum);
}
//计算神经元的误差,输入为后一层的误差向量和权重矩阵
void calc_error(vector<double> errors, vector<vector<double>> weights) {
double sum = 0.0;
for (int i = 0; i < errors.size(); i++) {
sum += errors[i] * weights[i][this->index];
}
this->error = sum * sigmoid_der(this->output);
}
//更新神经元的权重,输入为学习率
void update_weights(double lr) {
for (int i = 0; i < input_num; i++) {
this->weights[i] += lr * this->error * this->inputs[i];
}
}
//获取神经元的输出
double get_output() {
return this->output;
}
//获取神经元的误差
double get_error() {
return this->error;
}
//获取神经元的权重
vector<double> get_weights() {
return this->weights;
}
//设置神经元的索引,用于计算误差
void set_index(int index) {
this->index = index;
}
private:
int input_num; //输入个数
int index; //索引
double output; //输出
double error; //误差
vector<double> inputs; //输入向量
vector<double> weights; //权重向量
};
//定义神经网络层类
class Layer {
public:
//构造函数,初始化神经元个数、前后层的连接
Layer(int neuron_num, int input_num) {
this->neuron_num = neuron_num;
this->input_num = input_num;
this->neurons.resize(neuron_num);
//创建神经元对象,并设置索引
for (int i = 0; i < neuron_num; i++) {
this->neurons[i] = new Neuron(input_num);
this->neurons[i]->set_index(i);
}
}
//计算神经网络层的输出,输入为前一层的输出向量
void calc_output(vector<double> inputs) {
this->inputs = inputs;
this->outputs.resize(neuron_num);
for (int i = 0; i < neuron_num; i++) {
this->neurons[i]->calc_output(inputs);
this->outputs[i] = this->neurons[i]->get_output();
}
}
//计算神经网络层的误差,输入为后一层的误差向量和权重矩阵
void calc_error(vector<double> errors, vector<vector<double>> weights) {
this->errors.resize(neuron_num);
for (int i = 0; i < neuron_num; i++) {
this->neurons[i]->calc_error(errors, weights);
this->errors[i] = this->neurons[i]->get_error();
}
}
//更新神经网络层的权重,输入为学习率
void update_weights(double lr) {
for (int i = 0; i < neuron_num; i++) {
this->neurons[i]->update_weights(lr);
}
}
//获取神经网络层的输出
vector<double> get_outputs() {
return this->outputs;
}
//获取神经网络层的误差
vector<double> get_errors() {
return this->errors;
}
//获取神经网络层的权重矩阵
vector<vector<double>> get_weights() {
vector<vector<double>> weights;
weights.resize(neuron_num);
for (int i = 0; i < neuron_num; i++) {
weights[i] = this->neurons[i]->get_weights();
}
return weights;
}
private:
int neuron_num; //神经元个数
int input_num; //输入个数
vector<double> inputs; //输入向量
vector<double> outputs; //输出向量
vector<double> errors; //误差向量
vector<Neuron*> neurons; //神经元对象
};
//定义BP神经网络类
class BPNetwork {
public:
//构造函数,初始化输入层、隐含层、输出层的对象
BPNetwork(int input_num, int hidden_num, int output_num) {
this->input_num = input_num;
this->hidden_num = hidden_num;
this->output_num = output_num;
this->input_layer = new Layer(input_num, 1);
this->hidden_layer = new Layer(hidden_num, input_num);
this->output_layer = new Layer(output_num, hidden_num);
}
//初始化网络的参数,输入为学习率、迭代次数、误差阈值
void init_params(double lr, int epoch, double epsilon) {
this->lr = lr;
this->epoch = epoch;
this->epsilon = epsilon;
}
//训练网络,输入为训练数据集
void train(vector<vector<double>> train_data) {
int data_num = train_data.size();
for (int i = 0; i < epoch; i++) {
double error_sum = 0.0;
for (int j = 0; j < data_num; j++) {
//获取输入向量和期望输出向量
vector<double> inputs = train_data[j];
vector<double> targets(inputs.begin() + input_num, inputs.end());
inputs.resize(input_num);
//前向传播
input_layer->calc_output(inputs);
hidden_layer->calc_output(input_layer->get_outputs());
output_layer->calc_output(hidden_layer->get_outputs());
//反向传播
output_layer->calc_error(targets, output_layer->get_weights());
hidden_layer->calc_error(output_layer->get_errors(), output_layer->get_weights());
input_layer->calc_error(hidden_layer->get_errors(), hidden_layer->get_weights());
//更新权重
output_layer->update_weights(lr);
hidden_layer->update_weights(lr);
input_layer->update_weights(lr);
//计算误差
error_sum += calc_error(targets, output_layer->get_outputs());
}
//输出误差
cout << "Epoch " << i + 1 << ": Error = " << error_sum / data_num << endl;
//判断是否达到误差阈值
if (error_sum / data_num < epsilon) {
cout << "Training finished." << endl;
break;
}
}
}
//预测网络,输入为测试数据集
void predict(vector<vector<double>> test_data) {
int data_num = test_data.size();
for (int i = 0; i < data_num; i++) {
//获取输入向量和期望输出向量
vector<double> inputs = test_data[i];
vector<double> targets(inputs.begin() + input_num, inputs.end());
inputs.resize(input_num);
//前向传播
input_layer->calc_output(inputs);
hidden_layer->calc_output(input_layer->get_outputs());
output_layer->calc_output(hidden_layer->get_outputs());
//输出预测结果
cout << "Input: ";
for (int j = 0; j < input_num; j++) {
cout << inputs[j] << " ";
}
cout << endl;
cout << "Target: ";
for (int j = 0; j < output_num; j++) {
cout << targets[j] << " ";
}
cout << endl;
cout << "Output: ";
for (int j = 0; j < output_num; j++) {
cout << output_layer->get_outputs()[j] << " ";
}
cout << endl;
cout << "--------------------------" << endl;
}
}
private:
int input_num; //输入个数
int hidden_num; //隐含层神经元个数
int output_num; //输出个数
double lr; //学习率
int epoch; //迭代次数
double epsilon; //误差阈值
Layer* input_layer; //输入层对象
Layer* hidden_layer; //隐含层对象
Layer* output_layer; //输出层对象
//计算误差,输入为期望输出向量和实际输出向量
double calc_error(vector<double> targets, vector<double> outputs) {
double error = 0.0;
for (int i = 0; i < output_num; i++) {
error += pow(targets[i] - outputs[i], 2);
}
return error / 2.0;
}
};
//编写主函数
int main() {
//创建BP神经网络对象,设置输入个数为2,隐含层神经元个数为4,输出个数为1
BPNetwork bp(2, 4, 1);
//初始化网络的参数,设置学习率为0.1,迭代次数为1000,误差阈值为0.01
bp.init_params(0.1, 1000, 0.01);
//创建训练数据集,每个数据包含输入向量和期望输出向量,这里用异或运算作为示例
vector<vector<double>> train_data = { {0, 0, 0}, {0, 1, 1}, {1, 0, 1}, {1, 1, 0} };
//训练网络
bp.train(train_data);
//创建测试数据集,与训练数据集相同
vector<vector<double>> test_data = train_data;
//预测网络
bp.predict(test_data);
return 0;
}