-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy path94-binary-tree-inorder-traversal.py
89 lines (82 loc) · 2.61 KB
/
94-binary-tree-inorder-traversal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def inorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
inorder = []
def inorder_helper(root):
if not root:
return
inorder_helper(root.left)
inorder.append(root.val)
inorder_helper(root.right)
inorder_helper(root)
return inorder
# time O(n), due to traverse
# space O(n), due to memory stack
# using tree and dfs (inorder and recursive)
class Solution:
def inorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
inorder = []
if not root:
return inorder
node = root
stack = []
while node or stack:
if node:
stack.append(node)
node = node.left
else:
node = stack.pop()
inorder.append(node.val)
node = node.right
return inorder
# time O(n), due to traverse
# space O(n), due to stack
# using tree and dfs (inorder and iterative)
class Solution:
def inorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
inorder = []
if not root:
return inorder
stack = [(root, False)]
while stack:
node, children_visited = stack.pop()
if children_visited:
inorder.append(node.val)
else:
if node.right:
stack.append((node.right, False))
stack.append((node, True))
if node.left:
stack.append((node.left, False))
return inorder
# time O(n), due to traverse
# space O(n), due to stack
# using tree and dfs (inorder and iterative)
class Solution:
def inorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
inorder = []
cur = root
while cur:
if not cur.left:
inorder.append(cur.val)
cur = cur.right
else:
prev = cur.left
while prev.right and prev.right != cur:
prev = prev.right
if not prev.right:
prev.right = cur
cur = cur.left
else:
inorder.append(cur.val)
prev.right = None
cur = cur.right
return inorder
# time O(n), due to traverse
# space O(1), if don't count output list
# using tree and dfs (inorder and morris traversal)